Earth Syst. Sci. Data Discuss., 6, 541–595, 2013 www.earth-syst-sci-data-discuss.net/6/541/2013/ doi:10.5194/essdd-6-541-2013 © Author(s) 2013. CC Attribution 3.0 License.

This discussion paper is/has been under review for the journal Earth System Science Data (ESSD). Please refer to the corresponding final paper in ESSD if available.

Fluxes of sedimenting material from sediment traps in the Atlantic Ocean

S. Torres-Valdés¹, S. C. Painter¹, A. P. Martin¹, R. Sanders¹, and J. Felden²

¹Ocean Biogeochemistry and Ecosystems Research Group, National Oceanography Centre, European Way, Southampton, SO14 3ZH, UK ²Center for Marine Environmental Sciences, Universität Bremen, Leobener Strasse,

POP 330 440, 28359 Bremen, Germany

Received: 14 August 2013 - Accepted: 21 August 2013 - Published: 9 September 2013

Correspondence to: S. Torres Valdés (sinhue@noc.ac.uk)

Published by Copernicus Publications.

Discussion Paper	6, 541-4	ESSDD 6, 541–595, 2013 POC export data				
—	S. Torres-	Valdés et al.				
Discussio	Title	Title Page				
on Pa	Abstract	Instruments				
aper	Data Provena	nce & Structure				
—	Tables	Figures				
Discussion	I4 ▼	►I ►				
Pap	Back	Close				
)er	Full Scr	Full Screen / Esc				
Discu	Printer-frie	ndly Version				
ssion Paper		Interactive Discussion				

Abstract

10

We provide a data set assemblage of directly observed and derived fluxes of sedimenting material (total mass, POC, PON, BSiO₂, CaCO₃, PIC and lithogenic/terrigenous fluxes) obtained using sediment traps. This data assemblage contains over 5900 data points distributed across the Atlantic, from the Arctic Ocean to the Southern Ocean. 5 Data from the Mediterranean Sea are also included. Data were compiled from a variety of sources: data repositories (e.g., BCO-DMO, PANGAEA), time series sites (e.g., BATS, CARIACO), published scientific papers and data provided by originating Pl's. All sources are specified within the combined data set. Data from the World Ocean Atlas 2009 were extracted to coincide with flux data to provide additional environmental information where available. Specifically, contemporaneous data were extracted for temperature, salinity, oxygen (concentration, AOU and percentage saturation), nitrate, phosphate and silicate. Data show a broad range of flux estimates, with marked dif-

ferences between ocean domains. Data also reveal important differences in the contribution that a given variable provides to the total mass flux, which is relevant towards understanding the factors that control the strength of the biological carbon pump. The dataset is archived on the data repository PANGAEA® (http://www.pangaea.de) under doi:10.1594/PANGAEA.807946.

Introduction 1

The export of particulate organic carbon (POC) from the sunlit upper layers to the 20 ocean interior is an important component of the global carbon cycle. It represents a natural means of mitigating the increasing levels of atmospheric CO₂ via the long term storage of carbon (particulate and dissolved) in the deep waters of the ocean and in deep ocean sediments. However, the global biological carbon pump (BCP) is not well constrained, with estimates of carbon transport ranging from 3.4-4.7 Gt C yr⁻¹ (Eppley 25 and Peterson, 1979) to $\sim 20 \,\text{Gt}\,\text{C}\,\text{yr}^{-1}$ depending on the method used (e.g., Laws et al.,

2000). In the North Atlantic alone, estimates of the BCP range 4-fold from 0.55 to $1.94 \,\text{Gt}\,\text{C}\,\text{yr}^{-1}$, representing 10–20% of global export fluxes (Sanders et al., 2013). The uncertainty of these estimates reflects the sparseness of observations and to a smaller extent the variety of methods employed.

- ⁵ Currently, several independently compiled datasets of export fluxes exist but they reside in separate data repositories as individual datasets. Given the importance of the BCP for carbon sequestration and the need to further constrain its magnitude, we have attempted to bring together into a single compilation, all data currently available on POC fluxes (and related variables) obtained from sediment trap deployments in the Atlantic Ocean, which includes the adjacent Arctic Ocean, the Atlantic sector of the Southern Ocean, and data from the Mediterranean Sea (as an adjacent sea). This data set assemblage was put together by the Ocean Biogeochemistry and Ecosystems Research Group (OBE) of the National Oceanography Centre, (NOC, UK) as part of the
- EU FP7 EuroBASIN Programme (Work Package 2). Data were obtained from a variety of sources including: data repositories (e.g., BCO-DMO, PANGAEA), time series sites (e.g., BATS, CARIACO), published scientific papers and directly from originating Pl's. All sources are specified within the data set.

2 Data

Observational studies of export production often make use of sediment traps. These are deployed at depths of interest in order to collect particles sinking through the water column. Upon recovery, particles are then analysed primarily to determine their carbon content, but additionally the nitrogen content is also easily obtained. The quantities of ballasting material such as calcium cabonate and opal are also increasingly important parameters. The flux rate of material captured by a trap can be calculated from knowledge of the duration a trap is deployed for and the aperture of the trap itself. By obtaining export fluxes at different depths, the efficiency of the carbon pump can be

evaluated simply as the fraction of the flux leaving the surface that makes it to a given depth.

2.1 Data sources

- The data assemblage presented here includes variables commonly measured in studies concerning export production. These include total mass (Tot_Mass) flux, particulate organic carbon (POC) flux, particulate organic nitrogen (PON) flux, biogenic silica (BSiO₂) flux, calcium carbonate (CaCO₃) flux, particulate inorganic carbon (PIC) flux, and terrigenous/lithogenic (Terr/Litho) material flux. Most data were obtained from data repositories and individual time series websites. 2679 data points (45% of total) were derived from 32 smaller data sets obtained from the Data Publisher for Earth and Environmental Science (PANGAEA) at http://www.pangaea.de. 111 data points (1.9%) were obtained from the Biological and Chemical Oceanography Data Management Office (BCO-DMO) at http://bcodmo.org (Lee et al., 2009a, b). 1755 data points (29.5%) were obtained from the Carbon Retention In A Colored Ocean Project Ocean Time Se-
- ries (CARIACO) at http://www.imars.usf.edu/CAR (Montes et al., 2012) and 784 data points (13.2 %) from the Bermuda Atlantic Time Series (BATS) at http://bats.bios.edu. Data (428 data points, 7.2 %) were also obtained from published journal articles (e.g., Fischer et al., 2000; Bory et al., 2001; Hwang et al., 2009). Finally, a few data sets (190 data points, 3.2 %) were directly obtained from Principal Investigators (Bauerfeind)
- et al., 2009; Lampitt et al., 2010). These combined data sets provide 5947 observations of export. The full data set is organised in columns as indicated in Table 1. The names and acronyms of variables as presented in this table are the most commonly used and less ambiguous terms. Not all individual data sets, though, contain all the variables listed in Table 1. The total number of data points per variable are presented
- ²⁵ in Table 2. POC flux contains the largest number of observations (5206 data points) and PIC flux the lowest (1048 data points).

2.2 Methods commonly employed

A major challenge involved in the compilation of this data set was the inconsistency with which authors refer to the same variable. Sometimes metadata make use of an acronym that is not consistent with the acronym used in a given column data-header,

⁵ particularly on data sets submitted to the PANGAEA data repository. While briefly describing the generalities of the methods commonly employed in the study of export fluxes, we also comment on the different terms used to refer to a given variable, which hopefully will provide some clarity.

The data compiled here include observations from a range of named sediment trap designs: moored automatic Kiel Sediment Traps (Bauerfeind et al., 2009; Bauerfeind and Nöthig, 2011), cone-shaped SMT 230 Kiel and Mark VI/V traps (Wefer and Fischer, 1993), Cone-shaped multi-sampling SMT 230 KMU traps (Romero et al., 2002; Fahl and Nöthig, 2007), Conical particle interceptor traps (Antia et al., 1999), Conical sediment McLane Mark-7 traps (Hwang et al., 2009), drifting Technicap PPS 5 sedi-

- ¹⁵ ment traps (Goutx et al., 2000), Kiel HDW traps (Jonkers et al., 2010), Large Aperture Time-Series Kiel type traps (Fischer et al., 2000, 2002; Iversen et al., 2010), Mark-VII automated sediment trap (CARIACO), McLane Mark 78G-21 (Jonkers et al., 2010), Multisample moored conical traps (Bory et al., 2001), PARAFLUX Mark 7G-13 time series sediment trap (Honjo and Manganini, 1993; Jickells, 2003a, b, c, d; Lampitt et al.,
- 20 2001, 2010), Aquatec Kiel type sediment trap (Neuer et al., 1997, 2007), Indented Rotary Sphere (IRS) settling velocity and time-series mode sediment traps (Peterson et al., 2005; Goutx et al., 2007; Lee et al., 2009a, b), SMT 234 Aquatec Meerestechnik Kiel trap (Helmke et al., 2005), Surface-Tethered Particle Interceptor Traps (BATS), PPS-5 traps (Jonkers et al., 2010). Some of these may be identical. However, there is
- insufficient information to ascertain this from the source and so, all are listed. Traps are left open to collect material for a range of periods, from a minimum of few hours or a day, to more than a year.

Before deployment, collecting cups of sediment traps are filled with ambient seawater. NaCl is typically added to increase the salinity to 40 (Antia et al., 1999; Bory and Newton, 2000; Fischer et al., 2002; Fahl and Nöthig, 2007; Neuer et al., 1997). Formalin to yield 2–3% formaldehyde (wt vol⁻¹) or mercuric chloride (0.14% final solution) are commonly added to poison the sample to preserve the content (Antia et al., 5 1999; Fischer et al., 2002; Fahl and Nöthig, 2007; Helmke et al., 2005; Bauerfeind et al., 2009). Following recovery of sediment traps, swimmers (i.e., zooplankton that feed on sedimenting material) are identified and removed from collecting cups (Antia et al., 1999; Bory et al., 2001; Lampitt et al., 2010). Sometimes the samples are sieved (1 mm mesh) to remove large swimmers (e.g., Fischer et al., 2000). Also, samples 10 are sometimes centrifuged following the removal of swimmers and the supernatant is then analysed in order to take into account of any possible dissolution of the material collected (e.g., Waniek et al., 2005). Samples from trap-cups are typically split to generate subsamples for the different types of analysis and filtered through pre-weighed filters which are rinsed with ammonium formate to remove salt and excess formalin 15 (e.g., Bory et al., 2001). The reader is referred to the source references for details of a particular deployment.

2.2.1 Total mass flux

Total mass is obtained by weighing the dried matter collected on a filter. As such, it is sometimes reported as dry mass. Total Mass Flux (Tot_Mass_{flux}, mg m⁻² d⁻¹) is calculated as Tot_Mass_{flux} = $\frac{M_w - F_w}{T \cdot A}$, where M_w is the mass dry weight (mg), F_w is the filter weight (mg), T is the deployment time (days), and A is the aperture trap area (m²) (e.g., Bahr et al., 1997).

2.2.2 POC and PON fluxes

POC and PON are measured using an elemental CHN analyser (e.g., Fischer et al., 2000; Bahr et al., 1997). The fraction of C and N in a given sample is multiplied by

Tot_Mass flux to yield POC and PON fluxes (mg m⁻² d⁻¹). Aliquots destined for the determination of POC and PON are filtered onto combusted (6 h 400 °C GF/F) filters (e.g., Goutx et al., 2000), or polycarbonate filters (25 mm or 47 mm) (e.g., Hwang et al., 2009). Before drying for CHN analysis, samples are rinsed with 1–6 N HCl to remove carbonate (Fischer et al., 2000; Goutx et al., 2000; Bory et al., 2001; Helmke et al., 2005; Iversen et al., 2010). Filters are then dried at 40 °C (e.g., Goutx et al., 2000), 60 °C (e.g., Hwang et al., 2009), or 80 °C (e.g., Wefer and Fischer, 1993; Helmke et al., 2005). Some authors use freeze drying instead (e.g., Fischer et al., 2002; Waniek et al., 2005). As a term, POC is frequently used interchangeably with "organic carbon (C_{org})" (e.g., Fischer et al., 1996; Lampitt et al., 2001), total organic carbon (Wefer and Fischer

¹⁰ (e.g., Fischer et al., 1996; Lampitt et al., 2001), total organic carbon (Wefer and Fischer, 1991; Jonkers et al., 2010) or just "total carbon". POC, is sometimes estimated using $C_{org} = C_{total} - C_{CaCO_3}$ (e.g., Romero et al., 2002), where C_{total} is the total carbon content of a sample and C_{CaCO_3} is the carbon content in calcium carbonate. Similarly PON is also sometimes referred to as total nitrogen (e.g., Lampitt and Antia, 1997; Jonkers 15 et al., 2010).

2.2.3 Calcium carbonate flux

In the literature, $CaCO_3$ flux is estimated in a variety of ways. It has been estimated as particulate inorganic carbon (PIC) flux times 8.34 (Lampitt et al., 2010) or times 8.33 (Lampitt et al., 2001; Fischer et al., 2002), based on the ratio of the molecular masses of carbon and calcium carbonate (though this is not usually explicitly stated). It is also sometimes calculated as $(C_{total} - C_{org}) \times 8.33$ (e.g., Wefer and Fischer, 1991; Helmke et al., 2005) following CHN analysis, or through mass loss following acidification and then weighing (e.g., Fahl and Nöthig, 2007). Hwang et al. (2009) refer to "biogenic $CaCO_3$ ", which they estimated by multiplying the "biogenic Ca" by 2.5. It is unclear however, where the factor of 2.5 comes from. In turn, they obtained "biogenic Ca" as

the difference between total Ca and lithogenic-Ca ($0.5 \times Al$). Total inorganic carbon is determined by coulometric titration (Hwang et al., 2009). CaCO₃ flux is sometimes

corrected if organisms containing calcium carbonate, such as pteropods, are present in the sample (e.g., Bauerfeind et al., 2009).

2.2.4 Particulate Inorganic Carbon (PIC) flux

PIC is estimated in different ways too. It is calculated as 12% carbonate by weight (Antia et al., 1999; Bauerfeind et al., 2009), implying C-CaCO₃ (i.e., the carbon content in calcium carbonate). PIC content is sometimes calculated from total Ca concentrations in samples as CaCO₃ (Bory et al., 2001). It is also estimated as C_{total}-C_{org}; i.e., the difference between the C measured in filtered samples without removal of carbonate, and the C measured in samples treated with HCl. The term "inorganic carbon" is sometimes used in the literature too (e.g., Lampitt and Antia, 1997; Lampitt et al., 2001), which seems to be used as equivalent of PIC.

2.2.5 Biogenic silica flux

25

Biogenic silica is typically measured with colorimetric methods following extraction from particulate material either following the alkaline digestion method of Mortlock and
¹⁵ Froelich (1989) (e.g., Antia et al., 1999; Bory et al., 2001) or the sequential leaching method of DeMaster (1981) as modified by Müller and Schneider (1993) (e.g., Wefer and Fischer, 1991, 1993; Romero et al., 2002; Helmke et al., 2005). In some cases, dissolved silica is first measured in the water used for the collecting cups. Dissolved silica is then measured again following the trap's recovery in order to correct for any opal dissolution (e.g., Jonkers et al., 2010). However, we note that not all the biogenic silica data in this compilation includes such a correction or its application to the data was not clear.

Hwang et al. (2009) report opal as the result of multiplying "biogenic Si" by 2.4, where "biogenic Si" is the difference between the total Si and the lithogenic-Si ($3.5 \times AI$). Bauerfeind et al. (2009) define "biogenic particulate silica (bPSi)" in their abstract, which suggests the compound "silicon dioxide" (SiO₂ · *n*H₂O) is being dealt with. How-

ever, in the methods section, it is redefined as "biogenic particulate silicon (bPSi)". Hence it is the chemical element Si that seems to be dealt with. Further, Opal is defined as 2.1 × bPSI; i.e., the mass ratio $\frac{SiO_2}{Si}$ multiplied by bPSi (Bauerfeind et al., 2009). Whether the terms "PSiO₂" (von Bodungen et al., 1995; Peinert et al., 2001; Bauerfeind and Nöthig, 2011), "PSiO₂ and BSiO₂" (Fischer, 2003), "PSi" (Fischer, 2005), "BSiO₂" 5 as the sum of PSiO₂ and DSiO₂ (e.g., Antia et al., 1999; Lampitt et al., 2001; Honjo and Manganini, 2003a, b, c), "BSiO₂" (Lampitt and Antia, 1997), "Opal" (Neuer et al., 1997, 2007), "bPSi or biogenic particulate silicon" (opal = 2.1 × bPSi) (Bauerfeind et al., 2009), "opaline silica" (Lampitt et al., 2010) or "biogenic silica (opal)" (Antia et al., 1999; Fischer et al., 2002; Waniek et al., 2005), are dealt with as one and the same variable, 10 is unfortunately unclear. In this data compilation we attempted to identify whether SiO₂ or Si was the variable being reported. When enough information was available, values of Si were converted to SiO₂ using the appropriate mass ratio. The data compilation contains a column of notes where we point out the variable reported in the original data

15 SOURCE.

2.2.6 Lithogenic and/or terrigenous material flux

where the factor of 12.15 comes from.

Lithogenic fluxes are typically estimated as the difference between the total mass flux and what is termed either "biogenic flux", "biogenic matter" or "organic matter flux"; i.e., CaCO₃ + POC + BSiO₂ fluxes (e.g., Antia et al., 1999; Bauerfeind et al., 2009). For this purpose, in deriving "organic matter", POC is sometimes multiplied by 2 (Fischer et al., 2002; Bauerfeind et al., 2009) or 2.5 (e.g., Hwang et al., 2009), as this is considered to give a more representative flux of organic matter, but in the literature, this adjustment would benefit from a fuller explanation. Thus, biogenic flux (Bio_{flux}) is Bio_{flux} = 2 × POC_{flux} + CaCO_{3flux} + Opal_{flux}. Lithogenic flux (Litho) is thus given by Litho = Tot_Mass_{flux} – Bio_{flux}. Some researchers estimate the lithogenic mass as a fraction (8.4 %) from Al concentrations (Bory et al., 2001) or by multiplying the Al concentration by 12.15 (e.g., Hwang et al., 2009). In the latter case, however, it is unclear

2.3 Data standardisation

This data assemblage contains fluxes from short duration deployments (hour to days) to longer duration deployments lasting months to a year, or over a year. Hence, in order to standardise the data set, all values from long term deployments, typically reported in gm⁻² yr⁻¹ (e.g., Wefer and Fischer, 1991, 1993; Fischer et al., 2000; Fischer, 2005; Peinert et al., 2001), were converted to daily values, i.e., mgm⁻² d⁻¹, which is the unit most commonly reported. Long term deployments, however, can be easily identified. A column is provided which specifies the duration of the deployment. A few daily values were reported in gm⁻² d⁻¹, and these were also converted to mgm⁻² d⁻¹ for consistency. In a few instances, POC, PIC, and BSiO₂ were reported in molm⁻² yr⁻¹ (e.g., Antia et al., 1999; Dymond and Lyle, 2003a, b; Honjo and Manganini, 2003d, e, f; Fahl and Nöthig, 2007) or mmolm⁻² d⁻¹. A column of notes is included, and where unit conversions were done, these are pointed out.

15 3 Quality control

Given that the data compiled here derives from research already published, we assume that the originating authors have already undertaken steps necessary to assure data quality. Here we have tried to as best as possible, and to the best of our knowledge, to put the data together in a self consistent manner, allowing users to trace original data sources should issues arise, in particular in light of the different deployment duration and traps used, different analytical methods employed, different calculation approaches, different units reported and the confusion generated by using multiple terms for a given variable and/or not clarifying whether a chemical element or a compound is being dealt with.

4 Ancillary data

Where possible, data from the World Ocean Atlas 2009 (WOA09) were extracted to coincide with flux data to provide additional environmental information (http://www.nodc. noaa.gov/OC5/WOA09/pr_woa09.html). Specifically, data were extracted for temper-

- ⁵ ature, salinity, oxygen (concentration, AOU and percentage saturation), nitrate, phosphate and silicate. The extraction involves linear interpolation of WOA09 data to the latitude, longitude and depth of the flux data. Each environmental variable is a weighted average over the period of deployment. Note that as WOA09 is a climatology it cannot provide data for specific years. For example, if a mooring collected flux data from
- ¹⁰ 1 November 1990 until 15 January 1991, the WOA data at the relevant point is averaged over the 76 days comprising the annual climatologies for November (for 30 days), December (for 31 days) and January (15 days). For temperature, salinity and oxygen variables, monthly climatologies are used above 1500 m and annual ones below. For nutrients, monthly climatologies are only available and used above 500 m. The distri-
- ¹⁵ bution of WOA09 climatologies does not extend close to the coasts. Hence, given the proximity of the CARIACO time series station to the mainland, ancillary data is not available for this site from WOA09.

5 Data distribution

Figure 1 shows the distribution of the sediment trap deployments compiled in this data
set. Data coverage spans from the early 1980's to the beginning of the 2010's, with the largest amount of observations between 1990 and 2010 (Fig. 2). Figure 3 shows the number of observations per station. The most abundant contributions to this dataset derive from established time series stations: BATS (31°40′ N, 64°10′ W) as pointed out above (Sect. 2.1); CARIACO (10.5° N, 64.4° W) as pointed out above (Sect. 2.1); DYnamique des Flux Atmosphériques en MEDiterranée et leur évolution dans la colonne d'eau (DYFAMED) 43°25′ N, 07°52′ E, 401 data points, 6.7% of total (Miquel et al.,

2011); The Porcupine Abyssal Plain (PAP), 49° N, 16°30′ W, 366 data points, 6.2% of total (Lampitt et al., 2001, 2010); The North Atlantic Bloom Experiment (NABE), 34° N, 21° W to 48° N, 21° W, 170 data points, 2.9% of total (Honjo and Manganini, 1993; Martin, 2003a, b, c); and the European Station for Time-Series in the Ocean (ESTOC, 29° N, 15.5°W, 124 data points, 2.1% of total (Neuer et al., 1997). Missing in this compilation are data from the Progamme Océan Multidisciplinaire Méso Echelle (POMME, 30 to 60° N and 0 to 30° W), which are not yet publicly available. We are also aware of a

- few more recent datasets from the ESTOC, but these have copy right restrictions (e.g., Neuer et al., 2007).
- ¹⁰ Observation depths span from 15 m down to 5031 m (Table 2). Tot_Mass, CaCO₃ and Terr/Litho exhibit the broadest range of export fluxes, while PON and PIC exhibit the narrowest range (Table 2). The largest number of observations, with higher vertical resolution, have been made within the first 1000 m of the water column, particularly in the upper 500 m (Figs. 4 and 5). At depths greater than 1000 m a preference for sampling at 3000 m is apparent in the data. With the exception of the PIC flux and
- lithogenic/terrigenous flux, which contain the lowest number of data points (Table 2), all other variables of particle export have been sampled at similar vertical resolution (Figs. 4 and 5).

The overall pattern of particle export fluxes is the expected decrease from upper layers to depth (Figs. 6 and 7). This is particularly clear in the Atlantic Ocean and Mediterranean Sea data (red and orange symbols in Figs. 6 and 7). POC, PON, BSiO₂ and CaCO₃ show a similar structure; the range of values at a given depth decreases from surface to depth. In the upper 1000 m, the largest fluxes of POC and PON occur in the Atlantic and the Arctic domains. Within the Arctic domain, the broad range of POC

²⁵ and PON fluxes in the upper 200 m derive from trap deployments off the northwest coast of Norway (~ 17° E, ~ 70° N). Largest fluxes of $BSiO_2$ in the upper 1000 m are found in the Atlantic and Southern Ocean domains. PIC fluxes are largest in the Atlantic and the Mediterranean Sea. In the Atlantic, PIC data show maximum values at 1400 m, which then decrease at greater depths (Fig. 7). These maximum values at 1400 m,

though, derive from trap deployments north of Ireland and may result from the supply of PIC from the shelf or shelf break front. CaCO₃ fluxes are rather comparable among ocean domains, though a larger range is found at about 150 m in the Atlantic. Terr/Litho fluxes show a broad range of values within the upper 1250 m which reduce substantially at greater depths.

The proportion each export variable makes to total mass flux is shown in Fig. 8. The largest contributions of up to 80% are provided by the Terr/Litho, CaCO₃ and BSiO₂ fractions but there is a broad range in the contribution each fraction makes to the total mass flux at all sampled depths and within the four ocean domains. In the case of CaCO₃ and terr/litho the range in the contribution from these fractions to total mass flux appears to narrow with depth which may reflect the attenuation of other variables with depth rather than any systematic change to terr/litho and CaCO₃ contributions. The largest contribution (up to 90%) made by BSiO₂ to total mass flux depths in the Southern Ocean with apparent peaks at depths

- ¹⁵ of 500 m and 4500 m; elsewhere the $BSiO_2$ contribution is smaller but nevertheless a major component of the downward particle flux. The contribution made by POC to total mass flux is broadly similar within all four ocean domains and decreases from ~ 80 % in the upper 500 m to < 20 % at 5000 m revealing a marked attenuation with depth. Both PON and PIC typically contribute < 20 % to total mass flux, but, whilst the contribution
- from PIC remains fairly constant with depth, there is vertical attenuation of PON with depth such that at depths > 500 m the PON contribution is < 10 %.</p>

6 Conclusions

We have assembled a dataset of over 5900 observations of particle flux across the wider Atlantic Ocean and adjacent seas which will be invaluable in determining seasonal and geographical variability in the BCP. Our initial examination of this dataset already indicates important differences in the flux estimates between ocean domains and in the contribution particular flux variables make to the total mass flux, which may in turn

indicate important differences in the strength of the BCP due to local environmental and ecosystem level forcing. Exploring the reasons for such differences remains a major scientific and societal problem particularly given projected changes to the future ocean and this dataset will help in this endeavour. The dataset is archived on the data repository PANGAEA[®] (http://www.pangaea.de) under doi:10.1594/PANGAEA.807946.

7 List of data sets compiled

- Antia, Avan N (2003): Particle fluxes of L2-B-92_trap. doi:10.1594/PANGAEA.92747
- Antia, Avan N (2003): Particle fluxes of OMEX2_trap. doi:10.1594/PANGAEA.92749
 - Antia, Avan N (2003): Particle fluxes of OMEX3_trap. doi:10.1594/PANGAEA.92748

15

- Antia, Avan N (2003): Particle fluxes of SEEP-7_trap. doi:10.1594/PANGAEA.92746
- Antia, Avan N (2003): Particle Flux of SEEP-10_trap. doi:10.1594/PANGAEA.92745
- Bahr, Fred; Bates, Nicolas R (2013): Total flux, particulate carbon and nitrogen from surface-tethered sediment traps at time series station BATS in 1988 and 1989. doi:10.1594/PANGAEA.805543

- Bahr, Fred; Bates, Nicolas R (2013): Total flux, particulate carbon and nitrogen from surface-tethered sediment traps at time series station BATS in 1990. doi:10.1594/PANGAEA.805545
- Bahr, Fred; Bates, Nicolas R (2013): Total flux, particulate carbon and nitrogen from surface-tethered sediment traps at time series station BATS in 1991. doi:10.1594/PANGAEA.805546
 - Bahr, Fred; Bates, Nicolas R (2013): Total flux, particulate carbon and nitrogen from surface-tethered sediment traps at time series station BATS in 1992. doi:10.1594/PANGAEA.805547

15

- Bahr, Fred; Bates, Nicolas R (2013): Total flux, particulate carbon and nitrogen from surface-tethered sediment traps at time series station BATS in 1993. doi:10.1594/PANGAEA.805548
- Bahr, Fred; Bates, Nicolas R (2013): Total flux, particulate carbon and nitrogen from surface-tethered sediment traps at time series station BATS in 1994. doi:10.1594/PANGAEA.805549
- Bahr, Fred; Bates, Nicolas R (2013): Total flux, particulate carbon and nitrogen from surface-tethered sediment traps at time series station BATS in 1995. doi:10.1594/PANGAEA.805550
- Bahr, Fred; Bates, Nicolas R (2013): Total flux, particulate carbon and nitrogen from surface-tethered sediment traps at time series station BATS in 1996.

doi:10.1594/PANGAEA.805551

- Bahr, Fred; Bates, Nicolas R (2013): Total flux, particulate carbon and nitrogen from surface-tethered sediment traps at time series station BATS in 1997. doi:10.1594/PANGAEA.805552
- Bahr, Fred; Bates, Nicolas R (2013): Total flux, particulate carbon and nitrogen from surface-tethered sediment traps at time series station BATS in 1998. doi:10.1594/PANGAEA.805553
- Bahr, Fred; Bates, Nicolas R (2013): Total flux, particulate carbon and nitrogen from surface-tethered sediment traps at time series station BATS in 1999. doi:10.1594/PANGAEA.805554
- Bahr, Fred; Bates, Nicolas R (2013): Total flux, particulate carbon and nitrogen from surface-tethered sediment traps at time series station BATS in 2000. doi:10.1594/PANGAEA.805555
 - Bahr, Fred; Bates, Nicolas R (2013): Total flux, particulate carbon and nitrogen from surface-tethered sediment traps at time series station BATS in 2001. doi:10.1594/PANGAEA.805556
 - Bahr, Fred; Bates, Nicolas R (2013): Total flux, particulate carbon and nitrogen from surface-tethered sediment traps at time series station BATS in 2002. doi:10.1594/PANGAEA.805557

25

20

5

- Bahr, Fred; Bates, Nicolas R (2013): Total flux, particulate carbon and nitrogen from surface-tethered sediment traps at time series station BATS in 2003. doi:10.1594/PANGAEA.805559
- Bahr, Fred; Bates, Nicolas R (2013): Total flux, particulate carbon and nitrogen from surface-tethered sediment traps at time series station BATS in 2004. doi:10.1594/PANGAEA.805560
 - Bahr, Fred; Bates, Nicolas R (2013): Total flux, particulate carbon and nitrogen from surface-tethered sediment traps at time series station BATS in 2005. doi:10.1594/PANGAEA.805561

15

- Bahr, Fred; Bates, Nicolas R (2013): Total flux, particulate carbon and nitrogen from surface-tethered sediment traps at time series station BATS in 2006. doi:10.1594/PANGAEA.805562
- Bahr, Fred; Bates, Nicolas R (2013): Total flux, particulate carbon and nitrogen from surface-tethered sediment traps at time series station BATS in 2007. doi:10.1594/PANGAEA.805563
- Bahr, Fred; Bates, Nicolas R (2013): Total flux, particulate carbon and nitrogen from surface-tethered sediment traps at time series station BATS in 2008. doi:10.1594/PANGAEA.805564
- Bahr, Fred; Bates, Nicolas R (2013): Total flux, particulate carbon and nitrogen from surface-tethered sediment traps at time series station BATS in 2009.

doi:10.1594/PANGAEA.805565

5

10

15

20

- Bahr, Fred; Bates, Nicolas R (2013): Total flux, particulate carbon and nitrogen from surface-tethered sediment traps at time series station BATS in 2010. doi:10.1594/PANGAEA.805566
- Bahr, Fred; Bates, Nicolas R (2013): Total flux, particulate carbon and nitrogen from surface-tethered sediment traps at time series station BATS in 2011. doi:10.1594/PANGAEA.805567
- Bauerfeind, Eduard; Nöthig, Eva-Maria (2011): Biogenic particle flux at AWI HAUSGARTEN from mooring FEVI3 at 2400 m. Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Bremerhaven, doi:10.1594/PANGAEA.757777
- Bauerfeind, Eduard; Nöthig, Eva-Maria; Beszczynska, Agnieszka; Fahl, Kirsten; Kaleschke, Lars; Kreker, Kathrin; Klages, Michael; Soltwedel, Thomas; Lorenzen, Christiane; Wegner, Jan (2009): Biogenic particle flux at AWI HAUSGARTEN from mooring FEVI1. doi:10.1594/PANGAEA.714840
- Bauerfeind, Eduard; Nöthig, Eva-Maria; Beszczynska, Agnieszka; Fahl, Kirsten; Kaleschke, Lars; Kreker, Kathrin; Klages, Michael; Soltwedel, Thomas; Lorenzen, Christiane; Wegner, Jan (2009): Biogenic particle flux at AWI HAUSGARTEN from mooring FEVI2. doi:10.1594/PANGAEA.714841
- Bauerfeind, Eduard; Nöthig, Eva-Maria; Beszczynska, Agnieszka; Fahl, Kirsten; Kaleschke, Lars; Kreker, Kathrin; Klages, Michael; Soltwedel, Thomas; Lorenzen,

Christiane; Wegner, Jan (2009): Biogenic particle flux at AWI HAUSGARTEN from mooring FEVI3 at 300 m. doi:10.1594/PANGAEA.714842

- Bauerfeind, Eduard; Nöthig, Eva-Maria; Beszczynska, Agnieszka; Fahl, Kirsten; Kaleschke, Lars; Kreker, Kathrin; Klages, Michael; Soltwedel, Thomas; Lorenzen, Christiane; Wegner, Jan (2009): Biogenic particle flux at AWI HAUSGARTEN from mooring FEVI4. doi:10.1594/PANGAEA.714843
- Bauerfeind, Eduard; Nöthig, Eva-Maria; Beszczynska, Agnieszka; Fahl, Kirsten; Kaleschke, Lars; Kreker, Kathrin; Klages, Michael; Soltwedel, Thomas; Lorenzen, Christiane; Wegner, Jan (2009): Biogenic particle flux at AWI HAUSGARTEN from mooring FEVI7. doi:10.1594/PANGAEA.714844
- Bory, A; Jeandel, Catherine; Leblond, Nathalie; Vangriesheim, Annick; Khripounoff, Alexis; Beaufort, Luc; Rabouille, Christophe; Nicolas, E; Tachikawa, Kazuyo; Etcheber, Henri; Buat-Menard, P (2012): Downward particle fluxes at the oligotrophic and mesotrophic site of the EUMELI program. doi:10.1594/PANGAEA.793296
- Dymond, Jack R; Lyle, Mitchell W (2003): Particle fluxes of HAP-4_trap. doi:10.1594/PANGAEA.92843
 - Dymond, Jack R; Lyle, Mitchell W (2003): Particle fluxes of NAP_trap. doi:10.1594/PANGAEA.92842

25

5

10

- Fahl, Kirsten; Nöthig, Eva-Maria (2007): Lithogenic and biogenic annual particle fluxes on the Lomonosov Ridge of trap LOMO-2. doi:10.1594/PANGAEA.586842
- Fahl, Kirsten; Nöthig, Eva-Maria (2007): Lithogenic and biogenic particle fluxes on the Lomonosov Ridge of trap LOMO-2. doi:10.1594/PANGAEA.586835
- Fischer, Gerhard (2003): Flux data of trap WR2. doi:10.1594/PANGAEA.89288
- Fischer, Gerhard (2003): Flux data of trap WR3. doi:10.1594/PANGAEA.89289
- Fischer, Gerhard (2003): Flux data of trap WR4. doi:10.1594/PANGAEA.89290
- Fischer, Gerhard (2005): Particle fluxes for the sampling interval, various ratios and major nutrients at the Atlantic/Southern Ocean trapping sites. doi:10.1594/PANGAEA.269660
- Fischer, Gerhard (2003): Particle fluxes of trap NU2. doi:10.1594/PANGAEA.115858
- Fischer, Gerhard; Gersonde, Rainer; Wefer, Gerold (2002): (Table 4) Annual fluxes, percentages of total mass and most important elemental ratios at the PF and BO sites. doi:10.1594/PANGAEA.760872
 - Fischer, Gerhard; Ratmeyer, Volker; Wefer, Gerold (2012): Total organic carbon fluxes (<1 mm size fraction), and export fluxes to a depth of 1000 m in the Atlantic

5

10

and Southern Ocean. doi:10.1594/PANGAEA.802815

- Goutx, Madeleine; Momzikoff, André; Striby, L; Andersen, Valérie; Marty, Jean-Claude; Vescovali, Isabelle (2000): Fluxes of particulate organic carbon and nitrogen at DYNAPROC station. doi:10.1594/PANGAEA.185223
- Helmke, Peer; Romero, Oscar E; Fischer, Gerhard (2005): Sampling intervals, fluxes, percentages of total flux, organic carbon and lithogen for sediment trap CB9. doi:10.1594/PANGAEA.319950
- Honjo, Susumu; Manganini, Steven J (2003): Annual Particle fluxes of NABE-N34_trap. doi:10.1594/PANGAEA.93385
- Honjo, Susumu; Manganini, Steven J (2003): Annual Particle fluxes of NABE-N48_trap. doi:10.1594/PANGAEA.93386
- Honjo, Susumu; Manganini, Steven J (2003): Biogenic particle flux of trap NABE-N34.1. doi:10.1594/PANGAEA.111884
- Honjo, Susumu; Manganini, Steven J (2003): Biogenic particle flux of trap NABE-N34.2. doi:10.1594/PANGAEA.111885
 - Honjo, Susumu; Manganini, Steven J (2003): Biogenic particle flux of trap NABE-N48.1. doi:10.1594/PANGAEA.111886

561

25

5

10

- Honjo, Susumu; Manganini, Steven J (2003): Biogenic particle flux of trap NABE-N48.2. doi:10.1594/PANGAEA.111887
- Hwang, Jeomshik; Manganini, Steven J; Montluçon, D; Eglinton, Timothy I (2012): Biogeochemical properties of sinking particles intercepted at three depths on the NW Atlantic margin. doi:10.1594/PANGAEA.793329
- Irwin, Brian (2002): POC, PON, chlorophyll, phaeophytin of BAF89/3_FTRAP1. doi:10.1594/PANGAEA.70440
- Irwin, Brian (2002): POC, PON, chlorophyll, phaeophytin of BAF89/3_FTRAP2. doi:10.1594/PANGAEA.70446
- Iversen, Morten Hvitfeldt; Nowald, Nicolas; Ploug, Helle; Jackson, George A; Fischer, Gerhard (2010): (Table 2) Total mass and organic carbon fluxes shown for each deployment. doi:10.1594/PANGAEA.745509
- Jickells, Timothy D (2003): Particle fluxes of 19°N20°W_trap. doi:10.1594/PANGAEA.93417
- 20

5

10

- Jickells, Timothy D (2003): Particle fluxes of 24°N23°W_trap. doi:10.1594/PANGAEA.93418
- Jickells, Timothy D (2003): Particle fluxes of 28°N22°W_trap. doi:10.1594/PANGAEA.93419

- Jickells, Timothy D (2003): Particle fluxes of Parflux7G_trap. doi:10.1594/PANGAEA.93420
- Jonkers, Lukas; Brummer, Geert-Jan A; Peeters, Frank J C; van Aken, Hendrik M; de Jong, M Femke (2010): Shell flux and oxygen isotope data of North Atlantic foraminifera. doi:10.1594/PANGAEA.753860
- Lampitt, Richard S; Antia, Avan N; Fischer, Gerhard (2006): Particle fluxes from sediment trap CB1. doi:10.1594/PANGAEA.357362
- Lampitt, Richard S; Antia, Avan N; Fischer, Gerhard (2006): Particle fluxes from sediment trap CB2. doi:10.1594/PANGAEA.357363
- Lampitt, Richard S; Antia, Avan N; Fischer, Gerhard (2006): Particle fluxes from sediment trap GBN3. doi:10.1594/PANGAEA.357371
- Lampitt, Richard S; Antia, Avan N; Fischer, Gerhard (2006): Particle fluxes from sediment trap GBZ4. doi:10.1594/PANGAEA.357373
- Lampitt, Richard S; Antia, Avan N; Fischer, Gerhard (2006): Particle fluxes from sediment trap WR1. doi:10.1594/PANGAEA.357381
 - Lampitt, Richard S; Antia, Avan N; Fischer, Gerhard (2006): Particle fluxes from sediment trap WR2. doi:10.1594/PANGAEA.357382

ESS 6, 541–5	ESSDD 6, 541–595, 2013					
POC exp	POC export data					
S. Torres-V	S. Torres-Valdés et al.					
Title	Title Page					
Abstract	Instruments					
Data Provenar	Data Provenance & Structure					
Tables	Figures					
I	١					
	F					
Back	Close					
Full Scre	een / Esc					
Printer-frier	Printer-friendly Version					
Interactive	Discussion					
CC O						

ISCUSSION Pape

Discussion Pape

563

15

25

5

- Lampitt, Richard S; Antia, Avan N; Fischer, Gerhard (2006): Particle fluxes from sediment trap WR3. doi:10.1594/PANGAEA.357383
- Lampitt, Richard S; Antia, Avan N; Fischer, Gerhard (2006): Particle fluxes from sediment trap WR4. doi:10.1594/PANGAEA.357384

10

20

- Lampitt, Richard S; Bett, Brian J; Kiriakoulakis, Kostas; Popova, E E; Ragueneau, Olivier; Vangriesheim, Annick; Wolff, George A (2001): Particle flux from sediment trap PAP-I. doi:10.1594/PANGAEA.108311
- Lampitt, Richard S; Bett, Brian J; Kiriakoulakis, Kostas; Popova, E E; Ragueneau, Olivier; Vangriesheim, Annick; Wolff, George A (2001): Particle flux from sediment trap PAP-III. doi:10.1594/PANGAEA.108312
- Lampitt, Richard S; Bett, Brian J; Kiriakoulakis, Kostas; Popova, E E; Ragueneau, Olivier; Vangriesheim, Annick; Wolff, George A (2001): Particle flux from sediment trap PAP-V. doi:10.1594/PANGAEA.108313
 - Lampitt, Richard S; Bett, Brian J; Kiriakoulakis, Kostas; Popova, E E; Ragueneau, Olivier; Vangriesheim, Annick; Wolff, George A (2001): Particle flux from sediment trap PAP-XIX. doi:10.1594/PANGAEA.108314
 - Lampitt, Richard S; Bett, Brian J; Kiriakoulakis, Kostas; Popova, E E; Ragueneau, Olivier; Vangriesheim, Annick; Wolff, George A (2001): Particle flux from sediment trap PAP-XV. doi:10.1594/PANGAEA.108315

- Lampitt, Richard S; Bett, Brian J; Kiriakoulakis, Kostas; Popova, E E; Ragueneau, Olivier; Vangriesheim, Annick; Wolff, George A (2001): Particle flux from sediment trap PAP-XVIII. doi:10.1594/PANGAEA.108316
- Lampitt, Richard S; Bett, Brian J; Kiriakoulakis, Kostas; Popova, E E; Ragueneau, Olivier; Vangriesheim, Annick; Wolff, George A (2001): Particle flux from sediment trap PAP-XX. doi:10.1594/PANGAEA.108317
 - Lampitt, Richard S; Bett, Brian J; Kiriakoulakis, Kostas; Popova, E E; Ragueneau, Olivier; Vangriesheim, Annick; Wolff, George A (2001): Particle flux from sediment trap PAP-XXIIIa. doi:10.1594/PANGAEA.108318

15

- Lampitt, Richard S; Bett, Brian J; Kiriakoulakis, Kostas; Popova, E E; Ragueneau, Olivier; Vangriesheim, Annick; Wolff, George A (2001): Particle flux from sediment trap PAP-XXV. doi:10.1594/PANGAEA.108319
- Lampitt, Richard S; Salters, Vincent JM; de Cuevas, Beverly; Hartman, S; Larkin, Kate E; Pebody, C A (2010): Particle flux from sediment trap PAP-XXVI. doi:10.1594/PANGAEA.794531
- Lampitt, Richard S; Salters, Vincent JM; de Cuevas, Beverly; Hartman, S; Larkin, Kate E; Pebody, C A (2010): Particle flux from sediment trap PAP-XXVII. doi:10.1594/PANGAEA.794532
- Lampitt, Richard S; Salters, Vincent JM; de Cuevas, Beverly; Hartman, S; Larkin, Kate E; Pebody, C A (2010): Particle flux from sediment trap PAP-XXVIII.

doi:10.1594/PANGAEA.794533

- Lampitt, Richard S; Salters, Vincent JM; de Cuevas, Beverly; Hartman, S; Larkin, Kate E; Pebody, C A (2010): Particle flux from sediment trap PAP-XXXI. doi:10.1594/PANGAEA.794534
- Lee, Cindy; Peterson, Michael L; Wakeham, Stuart G; Armstrong, Robert A; Cochran, J Kirk; Fukai, R; Fowler, Scott W; Hirschberg, David; Beck, Aaron; Xue, Jianhong (2013): Sediment Trap Data in the northwest Mediterranean Sea from the MedFlux project (2003 - 2005). doi:10.1594/PANGAEA.806963
- Martin, John (2003): Particle interceptor data of sediment trap AT_II-119/4_Trap_A. doi:10.1594/PANGAEA.112905
- Martin, John (2003): Particle interceptor data of sediment trap AT_II-119/4_Trap_B. doi:10.1594/PANGAEA.112906
 - Martin, John (2003): Particle interceptor data of sediment trap AT_II-119/5_Trap_C. doi:10.1594/PANGAEA.112907
- 20

25

15

5

- Miquel, Juan-Carlos (2004): Particulate flux of carbon at DYNAPROC station. doi:10.1594/PANGAEA.185222
- Miquel, Juan-Carlos; Marty, Jean-Claude (2004): Downward flux of particles and carbon at trap DYF1. doi:10.1594/PANGAEA.183686

- Miquel, Juan-Carlos; Marty, Jean-Claude (2004): Downward flux of particles and carbon at trap DYF10. doi:10.1594/PANGAEA.183687
- Miquel, Juan-Carlos; Marty, Jean-Claude (2004): Downward flux of particles and carbon at trap DYF11. doi:10.1594/PANGAEA.183688

15

- Miquel, Juan-Carlos; Marty, Jean-Claude (2004): Downward flux of particles and carbon at trap DYF12. doi:10.1594/PANGAEA.183689
- Miquel, Juan-Carlos; Marty, Jean-Claude (2004): Downward flux of particles and carbon at trap DYF13. doi:10.1594/PANGAEA.183690
 - Miquel, Juan-Carlos; Marty, Jean-Claude (2004): Downward flux of particles and carbon at trap DYF14. doi:10.1594/PANGAEA.183691
 - Miquel, Juan-Carlos; Marty, Jean-Claude (2004): Downward flux of particles and carbon at trap DYF16. doi:10.1594/PANGAEA.183692
 - Miquel, Juan-Carlos; Marty, Jean-Claude (2004): Downward flux of particles and carbon at trap DYF17. doi:10.1594/PANGAEA.183693
 - Miquel, Juan-Carlos; Marty, Jean-Claude (2004): Downward flux of particles and carbon at trap DYF18. doi:10.1594/PANGAEA.183694

	ESSDD					
	6, 541–595, 2013					
	POC export data					
-	S. Torres-Valdés et al.					
	Title	Page				
,	Abstract	Instruments				
	Data Provenan	ce & Structure				
	Tables	Figures				
	14	۲I				
	•	Þ				
]	Back	Close				
	Full Screen / Esc					
2	Printer-frier	idly Version				
	Interactive Discussion					
J	e	BY				

- Miquel, Juan-Carlos; Marty, Jean-Claude (2004): Downward flux of particles and carbon at trap DYF19. doi:10.1594/PANGAEA.183695
- Miquel, Juan-Carlos; Marty, Jean-Claude (2004): Downward flux of particles and carbon at trap DYF20. doi:10.1594/PANGAEA.183698

15

20

- Miquel, Juan-Carlos; Marty, Jean-Claude (2004): Downward flux of particles and carbon at trap DYF21. doi:10.1594/PANGAEA.183699
- Miquel, Juan-Carlos; Marty, Jean-Claude (2004): Downward flux of particles and carbon at trap DYF23. doi:10.1594/PANGAEA.183700
 - Miquel, Juan-Carlos; Marty, Jean-Claude (2004): Downward flux of particles and carbon at trap DYF24. doi:10.1594/PANGAEA.183701
 - Miquel, Juan-Carlos; Marty, Jean-Claude (2004): Downward flux of particles and carbon at trap DYF25. doi:10.1594/PANGAEA.183702
 - Miquel, Juan-Carlos; Marty, Jean-Claude (2004): Downward flux of particles and carbon at trap DYF26. doi:10.1594/PANGAEA.183703
 - Miquel, Juan-Carlos; Marty, Jean-Claude (2004): Downward flux of particles and carbon at trap DYF27. doi:10.1594/PANGAEA.183704

ESS 6, 541–5	ESSDD 6, 541–595, 2013					
POC exp	POC export data					
S. Torres-V	S. Torres-Valdés et al.					
Title	Page					
Abstract	Instruments					
Data Provenan	ce & Structure					
Tables	Figures					
14	►I					
	Þ					
Back	Close					
Full Scre	Full Screen / Esc					
Printer-frien	Printer-friendly Version					
Interactive	Interactive Discussion					

Iscussion Pape

Discussion Paper

Discussion Pape

Discussion Pa

- Miquel, Juan-Carlos; Marty, Jean-Claude (2004): Downward flux of particles and carbon at trap DYF2-Calvi. doi:10.1594/PANGAEA.183696
- Miquel, Juan-Carlos; Marty, Jean-Claude (2004): Downward flux of particles and carbon at trap DYF3. doi:10.1594/PANGAEA.183706

15

20

- Miquel, Juan-Carlos; Marty, Jean-Claude (2004): Downward flux of particles and carbon at trap DYF3-Calvi. doi:10.1594/PANGAEA.183705
- Miquel, Juan-Carlos; Marty, Jean-Claude (2004): Downward flux of particles and carbon at trap DYF4. doi:10.1594/PANGAEA.183708
 - Miquel, Juan-Carlos; Marty, Jean-Claude (2004): Downward flux of particles and carbon at trap DYF5. doi:10.1594/PANGAEA.183710
 - Miquel, Juan-Carlos; Marty, Jean-Claude (2004): Downward flux of particles and carbon at trap DYF5-Calvi. doi:10.1594/PANGAEA.183709
 - Miquel, Juan-Carlos; Marty, Jean-Claude (2004): Downward flux of particles and carbon at trap DYF6. doi:10.1594/PANGAEA.183712
 - Miquel, Juan-Carlos; Marty, Jean-Claude (2004): Downward flux of particles and carbon at trap DYF6-Calvi. doi:10.1594/PANGAEA.183711

	ESSDD						
	6, 541–595, 2013						
	POC export data						
	S. Torres-Valdés et al.						
	Title Page						
	Abstract	Instruments					
	Data Provenar	ice & Structure					
	Tables	Figures					
	14	►I					
		•					
	Back	Close					
	Full Screen / Esc						
!	Printer-friendly Version						
	Interactive Discussion						
I		BY					

Pape

cussion Pa

- Miquel, Juan-Carlos; Marty, Jean-Claude (2004): Downward flux of particles and carbon at trap DYF7. doi:10.1594/PANGAEA.183714
- Miquel, Juan-Carlos; Marty, Jean-Claude (2004): Downward flux of particles and carbon at trap DYF7-Calvi. doi:10.1594/PANGAEA.183713

15

20

- Miquel, Juan-Carlos; Marty, Jean-Claude (2004): Downward flux of particles and carbon at trap DYF8. doi:10.1594/PANGAEA.183715
- Miquel, Juan-Carlos; Marty, Jean-Claude (2004): Downward flux of particles and carbon at trap DYF9. doi:10.1594/PANGAEA.183716
 - Neuer, Susanne; Ratmeyer, Volker; Davenport, Robert; Fischer, Gerhard; Wefer, Gerold (1997): Flux data from trap Cl1. doi:10.1594/PANGAEA.57966
 - Neuer, Susanne; Ratmeyer, Volker; Davenport, Robert; Fischer, Gerhard; Wefer, Gerold (1997): Flux data from trap CI2. doi:10.1594/PANGAEA.725938
 - Neuer, Susanne; Ratmeyer, Volker; Davenport, Robert; Fischer, Gerhard; Wefer, Gerold (1997); Elux data from tran CI3, doi:10.1594/PANGAEA.725939
 - Gerold (1997): Flux data from trap CI3. doi:10.1594/PANGAEA.725939
 - Neuer, Susanne; Ratmeyer, Volker; Davenport, Robert; Fischer, Gerhard; Wefer, Gerold (1997): Flux data from trap CI4. doi:10.1594/PANGAEA.725940

ESSDD						
6, 541–595, 2013						
POC export data						
S. Torres-Valdés et al.						
The	Fage					
Abstract	Instruments					
Data Provenance & Structure						
Tables	Figures					
I	►I					
Back	Close					
Full Screen / Esc						
Printer-friendly Version						
Interactive Discussion						
œ	BY					

Iscussion Pape

ISCUSSION Pa

- NGOFS; Tande, Kurt (2003): Particle flux of drift station JM9-1. doi:10.1594/PANGAEA.106530
- OMEX Project Members; Wassmann, Paul (2004): Fluxes of trap JM10_DRIFT2. doi:10.1594/PANGAEA.218086
- OMEX Project Members; Wassmann, Paul (2004): Fluxes of trap JM11_DRIFT1. doi:10.1594/PANGAEA.218087
- OMEX Project Members; Wassmann, Paul (2004): Fluxes of trap JM3_DRIFT1. doi:10.1594/PANGAEA.218089
 - OMEX Project Members; Wassmann, Paul (2004): Fluxes of trap JM4_DRIFT1. doi:10.1594/PANGAEA.218090
 - OMEX Project Members; Wassmann, Paul (2004): Fluxes of trap JM5_DRIFT1. doi:10.1594/PANGAEA.218091
 - OMEX Project Members; Wassmann, Paul (2004): Fluxes of trap JM6_DRIFT1. doi:10.1594/PANGAEA.218092
 - OMEX Project Members; Wassmann, Paul (2004): Fluxes of trap JM7_DRIFT1. doi:10.1594/PANGAEA.218093

15

- OMEX Project Members; Wassmann, Paul (2004): Fluxes of trap JM9_DRIFT1. doi:10.1594/PANGAEA.218094
- Peinert, Rolf; Antia, Avan N; Bauerfeind, Eduard; von Bodungen, Bodo; Haupt, Olaf; Krumbholz, Marita; Peeked, Ilka; Ramseier, René O; Voß, Maren; Zeitzschel, Bernt (2005): Annual fluxes as measured by moored traps in different years for the Atlantic Province. doi:10.1594/PANGAEA.231354
- Peinert, Rolf; Antia, Avan N; Bauerfeind, Eduard; von Bodungen, Bodo; Haupt, Olaf; Krumbholz, Marita; Peeken, Ilka; Ramseier, René O; Voß, Maren; Zeitzschel, Bernt (2005): Annual fluxes as measured by moored traps in different years for the Polar Province. doi:10.1594/PANGAEA.231353
- Raab, Alexandra; von Bodungen, Bodo (2003): Monthly mean flux values at mooring station VP (Vöring Plateau). doi:10.1594/PANGAEA.106809
- Raab, Alexandra; von Bodungen, Bodo (2003): Monthly mean flux values at moring station NB (Lofoten Basin). doi:10.1594/PANGAEA.106810
- ²⁰ Shevchenko, Vladimir P (2000): tab1+2. doi:10.1594/PANGAEA.56212
 - Tett, Paul (2005): Flux values of different LOIS-Trap Sites. doi:10.1594/PANGAEA.56170

10

- Thomsen, C; von Bodungen, Bodo (2001): tab 3.1.1+2 Vertical particle flux and alkenones in mooring NB6. doi:10.1594/PANGAEA.60035
- Thomsen, C; von Bodungen, Bodo (2001): tab 3.2.1+2 Vertical particle flux and alkenones in mooring OG4. doi:10.1594/PANGAEA.60034

20

- Thunell, Robert C; Tappa, Eric (2013): Sediment Trap Data from the CARIACO Ocean Time Series (1995-2010). doi:10.1594/PANGAEA.805397
- von Bodungen, Bodo; Antia, Avan N; Bauerfeind, Eduard; Haupt, Olaf; Koeve, Wolfgang; Machado, E; Peeken, Ilka; Peinert, Rolf; Reitmeier, Sven; Thomsen, C; Voß, Maren; Wunsch, M; Zeller, Ute; Zeitzschel, Bernt (1995): Flux data in the Greenland Basin from sediment trap OG4. doi:10.1594/PANGAEA.56177
- von Bodungen, Bodo; Antia, Avan N; Bauerfeind, Eduard; Haupt, Olaf; Koeve, Wolfgang; Machado, E; Peeken, Ilka; Peinert, Rolf; Reitmeier, Sven; Thomsen, C; Voß, Maren; Wunsch, M; Zeller, Ute; Zeitzschel, Bernt (1995): Particle and nutrient flux data from mooring OG5 in the Greenland Basin. doi:10.1594/PANGAEA.72222
 - Waniek, Joanna J; Schulz-Bull, Detlef; Kuss, Joachim; Blanz, Thomas (2005): Deep ocean particle flux (>1000 m) and composition of particles collected by sediment traps at various sites in the northeast Atlantic (open ocean only) compiled from different sources. doi:10.1594/PANGAEA.802282
 - Waniek, Joanna J; Schulz-Bull, Detlef; Kuss, Joachim; Blanz, Thomas (2005): Interannual comparison of deep partical fluxes in the northeast Atlantic.

doi:10.1594/PANGAEA.802211

- Wefer, Gerold (2003): Particle fluxes of KG2_trap. doi:10.1594/PANGAEA.93499
- Wefer, Gerold (2003): Particle fluxes of WS2_trap. doi:10.1594/PANGAEA.93498
 - Wefer, Gerold; Fischer, Gerhard (1991): (Table 2) Estimates of annual flux data in the South Atlantic. doi:10.1594/PANGAEA.92454
- Wefer, Gerold; Fischer, Gerhard (1991): (Table 2a) Flux data of total mass and individual biogenic components for trap WS3. doi:10.1594/PANGAEA.89396
 - Wefer, Gerold; Fischer, Gerhard (1991): (Table 2b) Flux data of total mass and individual biogenic components for trap WS4. doi:10.1594/PANGAEA.89397
 - Wefer, Gerold; Fischer, Gerhard (1991): (Table 2c) Flux data of total mass and individual biogenic components for trap Polar_Front_1. doi:10.1594/PANGAEA.734156
- Wefer, Gerold; Fischer, Gerhard (2003): Particle fluxes of CB1_trap. doi:10.1594/PANGAEA.93490
 - Wefer, Gerold; Fischer, Gerhard (2003): Particle fluxes of CB2_trap. doi:10.1594/PANGAEA.93491

574

25

- Wefer, Gerold; Fischer, Gerhard (2003): Particle fluxes of CB4_trap. doi:10.1594/PANGAEA.93492
- Wefer, Gerold; Fischer, Gerhard (2003): Particle fluxes of GBN6_trap. doi:10.1594/PANGAEA.93489

15

- Wefer, Gerold; Fischer, Gerhard (2003): Particle fluxes of GBZ4_trap. doi:10.1594/PANGAEA.93488
- Žarić, Snježana (2005): Planktic foraminiferal flux of sediment trap CB1_trap. doi:10.1594/PANGAEA.264495
 - Žarić, Snježana (2005): Planktic foraminiferal flux of sediment trap CB2_trap. doi:10.1594/PANGAEA.264496
 - Žarić, Snježana (2005): Planktic foraminiferal flux of sediment trap CB3_trap. doi:10.1594/PANGAEA.264497
 - Žarić, Snježana (2005): Planktic foraminiferal flux of sediment trap CB4_trap, lower. doi:10.1594/PANGAEA.264645
 - Žarić, Snježana (2005): Planktic foraminiferal flux of sediment trap CB4_trap, upper. doi:10.1594/PANGAEA.264644

- Žarić, Snježana (2005): Planktic foraminiferal flux of sediment trap CB5_trap. doi:10.1594/PANGAEA.264499
- Žarić, Snježana (2005): Planktic foraminiferal flux of sediment trap EA1_trap. doi:10.1594/PANGAEA.264504
- Žarić, Snježana (2005): Planktic foraminiferal flux of sediment trap EA2_trap. doi:10.1594/PANGAEA.264505
- Žarić, Snježana (2005): Planktic foraminiferal flux of sediment trap EA3_trap. doi:10.1594/PANGAEA.264506
 - Žarić, Snježana (2005): Planktic foraminiferal flux of sediment trap EA4_trap. doi:10.1594/PANGAEA.264507
 - Žarić, Snježana (2005): Planktic foraminiferal flux of sediment trap WA1_trap, 1232 m trap depth. Department of Geosciences, Bremen University, doi:10.1594/PANGAEA.264697
- Žarić, Snježana (2005): Planktic foraminiferal flux of sediment trap WA1_trap, 4991 m trap depth. Department of Geosciences, Bremen University, doi:10.1594/PANGAEA.264698
 - Žarić, Snježana (2005): Planktic foraminiferal flux of sediment trap WA1_trap, 652 m trap depth. Department of Geosciences, Bremen Univer-

5

sity, doi:10.1594/PANGAEA.264696

5

15

20

- Žarić, Snježana (2005): Planktic foraminiferal flux of sediment trap WA2_trap. Department of Geosciences, Bremen University, doi:10.1594/PANGAEA.264532
- Žarić, Snježana (2005): Planktic foraminiferal flux of sediment trap WA3_trap, 5031 m trap depth. Department of Geosciences, Bremen University, doi:10.1594/PANGAEA.264700
- Žarić, Snježana (2005): Planktic foraminiferal flux of sediment trap WAB1_trap, 4515 m trap depth. Department of Geosciences, Bremen University, doi:10.1594/PANGAEA.264754
 - Žarić, Snježana (2005): Planktic foraminiferal flux of sediment trap WAB1_trap, 727 m trap depth. Department of Geosciences, Bremen University, doi:10.1594/PANGAEA.264747
 - Žarić, Snježana (2005): Planktic foraminiferal flux of sediment trap WAB2_trap.
 Department of Geosciences, Bremen University, doi:10.1594/PANGAEA.264536
 - Žarić, Snježana (2005): Planktic foraminiferal flux of sediment trap WR2_trap. doi:10.1594/PANGAEA.264542
 - Žarić, Snježana (2005): Planktic foraminiferal flux of sediment trap WR3_trap. doi:10.1594/PANGAEA.264543

- Žarić, Snježana (2005): Planktic foraminiferal flux of sediment trap WR4_trap. doi:10.1594/PANGAEA.264544
- Žarić, Snježana (2005): Planktic foraminiferal flux of sediment trap WS1_trap. doi:10.1594/PANGAEA.264546
- Žarić, Snježana (2005): Planktic foraminiferal flux of sediment trap WS2_trap. doi:10.1594/PANGAEA.264547
- Žarić, Snježana (2005): Planktic foraminiferal flux of sediment trap WS3_trap. doi:10.1594/PANGAEA.264548
 - Žarić, Snježana (2005): Planktic foraminiferal flux of sediment trap WS4_trap. doi:10.1594/PANGAEA.264549

Acknowledgements. Funding was provided by the EU FP7 Euro BASIN Programme. Additional support was provided by the National Environment Research Council (UK) National Capability funds. The authors are grateful to Cindy Lee, Susanne Neuer and Eduard Bauerfeind for the provision of additional data to that already publicly available.

20 **References**

Antia, A. N., von Bodungen, B., and Peinert, R.: Particle flux across the mid-European continental margin, Deep-Sea Res. Pt. I, 46, 1999–2024, doi:10.1016/S0967-0637(99)00041-2, 1999. 545, 546, 548, 549, 550

Bahr, F., Kelly, R., Bates, N. R., Becker, S., Bell, S., Countway, P., Caporelli, E., Church, M. J., Close, A., Doyle, A., Gundersen, K., Hammer, M., Howse, F., Johnson, R., Goldthwait, S.,

25

5

Little, R., Morrison, R., Orcutt, K., Sanderson, M., Sherriff-Dow, R., Sorensen, J., Stone, S., Rathbun, C., and Waterhouse, T.: Bermuda Atlantic Time-Series Study: Methods, Tech. rep., 1997. 546

Bauerfeind, E. and Nöthig, E.-M.: Biogenic particle flux at AWI HAUSGARTEN from mooring

FEVI3 at 2400 m, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany, doi:10.1594/PANGAEA.757777, 2011. 545, 549

 Bauerfeind, E., Noethig, E.-M., Beszczynska, A., Fahl, K., Kaleschke, L., Kreker, K., Klages,
 M., Soltwedel, T., Lorenzen, C., and Wegner, J.: Particle sedimentation patterns in the eastern Fram Strait during 2000–2005: Results from the Arctic long-term observatory HAUS-

¹⁰ GARTEN, Deep-Sea Res. Pt. I, 56, 1471–1487, doi:10.1016/j.dsr.2009.04.011, 2009. 544, 545, 546, 548, 549

Bory, A., Jeandel, C., Leblond, N., Vangriesheim, A., Khripounoff, A., Beaufort, L., Rabouille, C., Nicolas, E., Tachikawa, K., and Etcheber, H.: Downward particle fluxes within different productivity regimes off the Mauritanian upwelling zone (EUMELI program), Deep-Sea Res.

Pt. I, 48, 2251–2282, doi:10.1016/S0967-0637(01)00010-3, 2001. 544, 545, 546, 547, 548, 549

Bory, A. J. M. and Newton, P. P.: Transport of airborne lithogenic material down through the water column in two contrasting regions of the eastern subtropical North Atlantic Ocean, Global Biogeochem. Cy., 14, 297–315, doi:10.1029/1999GB900098, 2000. 546

 DeMaster, D. J.: The Supply and Accumulation of Silica in the Marine-Environment, Geochim. Cosmochim. Ac., 45, 1715–1732, doi:10.1016/0016-7037(81)90006-5, 1981. 548
 Dymond, J. and Lyle, M. W.: Particle fluxes of NAP_trap, doi:10.1594/PANGAEA.92842, 2003a. 550

Dymond, J. and Lyle, M. W.: Particle fluxes of HAP-4_trap, doi:10.1594/PANGAEA.92843, 2003b. 550

Eppley, R. W. and Peterson, B. J.: Particulate organic matter flux and planktonic new production in the deep ocean, Nature, 282, 677–680, doi:10.1038/282677a0, 1979. 542

25

Fahl, K. and Nöthig, E.-M.: Lithogenic and biogenic particle fluxes on the Lomonosov Ridge (central Arctic Ocean) and their relevance for sediment accumulation: Vertical vs. lateral

³⁰ transport, Deep-Sea Res. Pt. I, 54, 1256–1272, doi:10.1016/j.dsr.2007.04.014, 2007. 545, 546, 547, 550

Fischer, G.: Particle fluxes of trap NU2, Geosciences, University of Bremen (GeoB, doi:10.1594/PANGAEA.115858, 2003. 549

Fischer, G.: Particle fluxes for the sampling interval, various ratios and major nutrients at the Atlantic/Southern Ocean trapping sites, Center for Marine Environmental Sciences (MARUM), doi:10.1594/PANGAEA.269660, 2005. 549, 550

Fischer, G., Donner, B., Ratmeyer, V., Davenport, R., and Wefer, G.: Distinct year-to-year parti-

- cle flux variations off Cape Blanc during 1988–1991: Relation to δ¹⁸O-deduced sea-surface temperatures and trade winds, J. Mar. Res., 54, 73–98, doi:10.1357/0022240963213484, 1996. 547
 - Fischer, G., Ratmeyer, V., and Wefer, G.: Organic carbon fluxes in the Atlantic and the Southern Ocean: relationship to primary production compiled from satellite radiometer data, Deep-Sea
- ¹⁰ Res. Pt. II, 47, 1961–1997, doi:10.1016/S0967-0645(00)00013-8, 2000. 544, 545, 546, 547, 550
 - Fischer, G., Gersonde, R., and Wefer, G.: Organic carbon, biogenic silica and diatom fluxes in the marginal winter sea-ice zone and in the Polar Front Region: interannual variations and differences in composition, Deep-Sea Res. Pt. II, 49, 1721–1745, doi:10.1016/S0967-0645(02)00000, 7, 2002, 545, 546, 547

15 0645(02)00009-7, 2002. 545, 546, 547, 549

- Goutx, M., Momzikoff, A., Striby, L., Andersen, V., Marty, J., and Vescovali, I.: High-frequency fluxes of labile compounds in the central Ligurian Sea, northwestern Mediterranean, Deep-Sea Res. Pt. I, 47, 533–556, doi:10.1016/S0967-0637(99)00101-6, 2000. 545, 547
 Goutx, M., Wakeham, S. G., Lee, C., Duflos, M., Guigue, C., Liu, Z., Moriceau, B., Sempere,
- R., Tedetti, M., and Xue, J.: Composition and degradation of marine particles with different settling velocities in the northwestern Mediterranean Sea, Limnol. Oceanogr., 52, 1645–1664, 2007. 545
 - Helmke, P., Romero, O., and Fischer, G.: Northwest African upwelling and its effect on offshore organic carbon export to the deep sea, Global Biogeochem. Cy., 19, GB4015, doi:10.1029/2004GB002265, 2005. 545, 546, 547, 548
 - Honjo, S. and Manganini, S.: Annual biogenic particle fluxes to the interior of the North Atlantic Ocean; studied at 34°N 21°W and 48°N 21°W, Deep-Sea Res. Pt. II, 40, 587–607, doi:10.1016/0967-0645(93)90034-K, 1993. 545, 552
- Honjo, S. and Manganini, S. J.: Annual Particle fluxes of NABE-N34_trap, Woods
 ³⁰ Hole Oceanographic Institution, USA: U.S. JGOFS Data Management Office, doi:10.1594/PANGAEA.93385, 2003a. 549

	Honjo, S. and Manganini, S. J.: Biogenic particle flux of trap NABE-N34.1, Woods Hole Oceanographic Institution, USA: U.S. JGOES Data Management Office	Disc
	doi:10.1594/PANGAEA.111884, 2003b. 549	SSN
	Honjo, S. and Manganini, S. J.: Biogenic particle flux of trap NABE-N34.2, Woods	ion
5	doi:10.1594/PANGAEA.111885. 2003c. 549	Pap
	Honjo, S. and Manganini, S. J.: Annual Particle fluxes of NABE-N48_trap, Woods	Ē
	Hole Oceanographic Institution, USA: U.S. JGOFS Data Management Office,	—
10	401:10.1594/PANGAEA.93386, 20030. 550 Honio S and Manganini S J. Biogenic particle flux of tran NABE-N48.1 Woods	
10	Hole Oceanographic Institution, USA: U.S. JGOFS Data Management Office,	SCU
	doi:10.1594/PANGAEA.111886, 2003e. 550	SSi
	Honjo, S. and Manganini, S. J.: Biogenic particle flux of trap NABE-N48.2, Woods	on F
15	doi:10.1594/PANGAFA.111887.2003f 550	ap
10	Hwang, J., Manganini, S. J., Montlucon, D. B., and Eglinton, T. I.: Dynamics of parti-	<u> </u>
	cle export on the Northwest Atlantic margin, Deep-Sea Res. Pt. I, 56, 1792-1803,	—
	doi:10.1016/j.dsr.2009.05.007, 2009. 544, 545, 547, 548, 549	
20	vertical particulate organic matter export off Cape Blanc, Mauritania: Degradation processes	SCU
20	and ballasting effects, Deep-Sea Res. Pt. I, 57, 771–784, doi:10.1016/j.dsr.2010.03.007,	issi
	2010. 545, 547	n d
	Jickells, T. D.: Particle fluxes of 19°N-20°W_trap, doi:10.1594/PANGAEA.93417, 2003a. 545	Dap
25	JICKEIIS, T. D.: Particle fluxes of 28°N-22°W tran doi:10.1594/PANGAEA.93418, 20030. 545	θŗ
25	Jickells, T. D.: Particle fluxes of Parflux7G_trap, doi:10.1594/PANGAEA.93420, 2003d. 545	—
	Jonkers, L., Brummer, GJ. A., Peeters, F. J. C., van Aken, H. M., and De Jong, M. F.:	
	Seasonal stratification, shell flux, and oxygen isotope dynamics of left-coiling N. pachy-	iscu
30	PA2204 doi:10.1029/2009PA001849.2010.545.547.548	ISS!
50	Lampitt, R. and Antia, A.: Particle flux in deep seas: regional characteristics and temporal	on
	variability, Deep-Sea Res. Pt. I, 44, 1377–1403, doi:10.1016/S0967-0637(97)00020-4, 1997.	ap
	547, 548, 549	<u> </u>

- Lampitt, R. S., Bett, B. J., Kiriakoulakis, K., Popova, E. E., Ragueneau, O., Vangriesheim, A., and Wolff, G. A.: Material supply to the abyssal seafloor in the Northeast Atlantic, Prog. Oceanogr., 50, 27–63, doi:10.1016/S0079-6611(01)00047-7, 2001. 545, 547, 548, 549, 552 Lampitt, R. S., Salter, I., de Cuevas, B. A., Hartman, S., Larkin, K. E., and Pebody, C. A.: Long-
- term variability of downward particle flux in the deep northeast Atlantic: Causes and trends, Deep-Sea Res. Pt. II, 57, 1346–1361, doi:10.1016/j.dsr2.2010.01.011, 2010. 544, 545, 546, 547, 549, 552

Laws, E. A., Falkowski, P. G., Smith Jr., W. O., Ducklow, H., and McCarthy, J. J.: Temperature effects on export product in the open ocean, Global Biogeochem. Cy., 14, 1231–1246, 2000. 542

Lee, C., Armstrong, R. A., Cochran, J. K., Engel, A., Fowler, S. W., Goutx, M., Masque, P., Miquel, J. C., Peterson, M., Tamburini, C., and Wakeham, S.: MedFlux: Investigations of particle flux in the Twilight Zone, Deep-Sea Res. Pt. II, 56, 1363–1368, doi:10.1016/j.dsr2.2008.12.003, 2009a. 544, 545

10

- Lee, C., Peterson, M. L., Wakeham, S. G., Armstrong, R. A., Cochran, J. K., Miquel, J. C., Fowler, S. W., Hirschberg, D., Beck, A., and Xue, J.: Particulate organic matter and ballast fluxes measured using time-series and settling velocity sediment traps in the northwestern Mediterranean Sea, Deep-Sea Res. Pt. II, 56, 1420–1436, doi:10.1016/j.dsr2.2008.11.029, 2009b. 544, 545
- ²⁰ Martin, J.: Particle interceptor data of sediment trap AT_II-119/4_Trap_A, Woods Hole Oceanographic Institution, USA, doi:10.1594/PANGAEA.112905, 2003a. 550, 552

Martin, J.: Particle interceptor data of sediment trap AT_II-119/4_Trap_B, Woods Hole Oceanographic Institution, USA, doi:10.1594/PANGAEA.112906, 2003b. 550, 552

- Martin, J.: Particle interceptor data of sediment trap AT_II-119/5_Trap_C, Woods Hole Oceanographic Institution, USA, doi:10.1594/PANGAEA.112907, 2003c. 550, 552
 - Miquel, J. C., Martin, J., Gasser, B., Rodriguez-y Baena, A., Toubal, T., and Fowler, S. W.: Dynamics of particle flux and carbon export in the northwestern Mediterranean Sea: a two decade time-series study at the DYFAMED site, Prog. Oceanogr., 91, 461–481, doi:10.1016/j.pocean.2011.07.018, 2011. 551
- Montes, E., Muller-Karger, F., Thunell, R., Hollander, D., Astor, Y., Varela, R., Soto, I., and Lorenzoni, L.: Vertical fluxes of particulate biogenic material through the euphotic and twilight zones in the Cariaco Basin, Venezuela, Deep-Sea Res. Pt. I, 67, 73–84, doi:10.1016/j.dsr.2012.05.005, 2012. 544

Mortlock, R. A. and Froelich, P. N.: A simple method for the rapid determination of biogenic opal in pelagic marine sediments, Mar. Chem., 36, 1415–1426, doi:10.1016/0198-0149(89)90092-7, 1989. 548

Müller, P. J. and Schneider, R.: An automated leaching method for the determination of opal

- ⁵ in sediments and particulate matter, Deep-Sea Res. Pt. I, 40, 425–444, doi:10.1016/0967-0637(93)90140-X, 1993. 548
 - Neuer, S., Ratmeyer, V., Davenport, R., Fischer, G., and Wefer, G.: Deep water particle flux in the Canary Island region: seasonal trends in relation to long-term satellite derived pigment data and lateral sources, Deep-Sea Res. Pt. I, 44, 1451–1466, doi:10.1016/S0967-0637(97)00034-4, 1997. 545, 546, 549, 552
 - Neuer, S., Cianca, A., Helmke, P., Freudenthal, T., Davenport, R., Meggers, H., Knoll, M., Santana-Casiano, J. M., González Davila, M., Rueda, M.-J., and Llinás, O.: Biogeochemistry and hydrography in the eastern subtropical North Atlantic gyre. Results from the European time-series station ESTOC, Prog. Oceanogr., 72, 1–29, doi:10.1016/j.pocean.2006.08.001,

15 2007. 545, 549, 552

10

30

- Peinert, R., Antia, A., Bauerfeind, E., von Bodungen, B., Haupt, O., Krumbholz, M., Peeken, I., Ramseier, R. O., Voß, M., and Zeitzschel, B.: Particle flux variability in the polar and Atlantic provinces of the Nordic Seas, in: The Northern North Atlantic: A Changing Environment, edited by: Schäfer, P., Ritzrau, W., Schlüter, M., and Thiede, J., 53–68, Springer Verlag, 2001. 549, 550
 - Peterson, M., Wakeham, S., Lee, C., Askea, M., and Miquel, J.: Novel techniques for collection of sinking particles in the ocean and determining their settling rates, Limnol. Oceanogr.-Meth., 3, 520–532, 2005. 545

Romero, O., Boeckel, B., Lavik, G., Fischer, G., and Wefer, G.: Seasonal productivity dynam-

- ics in the pelagic central Benguela System inferred from the flux of carbonate and silicate organisms, J. Marine Syst., 37, 259–278, doi:10.1016/S0924-7963(02)00189-6, 2002. 545, 547, 548
 - Sanders, R., Henson, S., Koski, M., De La Rocha, C., Painter, S. C., Poulton, A., Riley, J., Salihoglu, B., Visser, A., Yool, A., Bellerby, R., and Martin, A.: The Biological Carbon Pump in the North Atlantic, Prog. Oceanogr., submitted, 2013. 543
- von Bodungen, B., Antia, A., Bauerfeind, E., Haupt, O., Koeve, W., Machado, E., Peeken, I., Peinert, R., Reitmeier, S., Thomsen, C., Voss, M., Wunsch, M., Zeller, U., and Zeitzschel, B.: Pelagic processes and vertical flux of particles: an overview of a long-term com-

parative study in the Norwegian Sea and Greenland Sea, Geol. Rundsch., 84, 11-27, doi:10.1007/BF00192239, 1995. 549

- Waniek, J., Schulz-Bull, D., Kuss, J., and Blanz, T.: Long time series of deep water particle flux in three biogeochemical provinces of the northeast Atlantic, J. Marine Syst., 56, 391–415,
- ⁵ doi:10.1016/j.jmarsys.2005.03.001, 2005. 546, 547, 549
 - Wefer, G. and Fischer, G.: Annual primary production and export flux in the Southern Ocean from sediment trap data, Mar. Chem., 35, 597–613, doi:10.1016/S0304-4203(09)90045-7, 1991. 547, 548, 550

Wefer, G. and Fischer, G.: Seasonal patterns of vertical particle flux in equatorial and

¹⁰ coastal upwelling areas of the eastern Atlantic, Deep-Sea Res. Pt. I, 40, 1613–1645, doi:10.1016/0967-0637(93)90019-Y, 1993. 545, 547, 548, 550

ES 6, 541–5	ESSDD 6, 541–595, 2013					
POC ex	POC export data					
S. Torres-\	S. Torres-Valdés et al.					
Title	Title Page					
Abstract	Instruments					
Data Provena	Data Provenance & Structure					
Tables	Figures					
I	۶I					
	•					
Back	Close					
Full Scr	Full Screen / Esc					
Printer-frie	Printer-friendly Version					
Interactive	Interactive Discussion					
CC O BY						

Discussion Paper

Discussion Paper

Discussion Paper

Fig. 2. Data time distribution histogram.

Fig. 3. Map showing observation counts (colour bar) per trap-deployment site.

Discussion Paper

Discussion Paper

Discussion Paper

Fig. 4. Observation counts relative to depth.

Fig. 5. Observation counts relative to depth.

Fig. 6. Tot_Mass, POC, PON, and $BSiO_2$ downward fluxes plotted against depth. Data points are colour-coded per ocean domain; Atlantic (red •), Mediterranean (orange •), Arctic (blue •), and Southern Ocean (black •).

Fig. 7. PIC, $CaCO_2$ and Litho/Terr downward fluxes plotted against depth. Data points are colour-coded per ocean domain; Atlantic (red •), Mediterranean (orange •), Arctic (blue •), and Southern Ocean (black •).

Discussion Paper

Discussion Paper

Discussion Paper

Fig. 8. Fraction of POC, PON, and BSiO₂, PIC, CaCO₂ and Litho/Terr downward fluxes relative to Tot Mass flux. Data points are colour-coded per ocean domain; Atlantic (red •), Mediterranean (orange •), Arctic (blue •), and Southern Ocean (black •). Few outliers (fraction > 1) were excluded from the graphs.

Table 1. Data set column headers. All fluxes are reported as per day over the period of deployment. We note that only at BATS are samples collected in triplicate. Hence, other than BATS, data under the "replicate 1" and "average" headers contain the same information. Not applicable is denoted (NA).

Label/Variable	Units	Description
ID	NA	Data point reference number.
Cruise/Project/Area/	NA	Cruise reference number or name, name of data, originating
STN/ Trap		project, area where data was collected from, station, trap ID
		(depending on available information).
yyyymmdd1	NA	Date in the format Year Month Day of sediment trap deployment.
yyyymmdd2	NA	Date in the format Year Month Day of sediment trap recovery.
Duration	Days	Duration of sediment trap deployment.
Lat	°N	Decimal latitude of sediment trap deployment.
Long	°E	Decimal longitude of sediment trap deployment.
Depth	m	Depth of sediment trap deployment.
Samp_id1	NA	Sample/cup ID replicate 1.
Samp_id2	NA	Sample/cup ID replicate 2 (if available).
Samp_id3	NA	Sample/cup ID replicate 3 (if available).
Tot_Mass1	mg m ⁻² d ⁻¹	Total mass flux replicate 1.
Tot_Mass2	mg m ^{-2} d ^{-1}	Total mass flux replicate 2 (if available).
Tot_Mass3	mg m ^{-2} d ^{-1}	Total mass flux replicate 3 (if available).
Tot_Mass_av	mg m ^{-2} d ^{-1}	Total mass flux average.
Tot_Mass_stdev	mg m ^{-2} d ^{-1}	Total mass standard deviation.
POC_1	mg m ^{-2} d ^{-1}	Particulate organic carbon flux replicate 1.
POC_2	$mg m^{-2} d^{-1}$	Particulate organic carbon flux replicate 2 (if available).
POC_3	$mg m^{-2} d^{-1}$	Particulate organic carbon flux replicate 3 (if available).
POC_Av	$mg m^{-2} d^{-1}$	Particulate organic carbon flux average.
POC_stdev	mg m ⁻² d ⁻¹	Particulate organic carbon flux standard deviation.
PON_1	$mg m^{-2} d^{-1}$	Particulate organic nitrogen flux replicate 1.
PON_2	$mg m^{-2} d^{-1}$	Particulate organic nitrogen flux replicate 2 (if available).
PON_3	mg m ⁻² d ⁻¹	Particulate organic nitrogen flux replicate 3 (if available).
PON_Av	${ m mg}~{ m m}^{-2}~{ m d}^{-1}$	Particulate organic nitrogen flux average.
PON_stdev	${ m mg}~{ m m}^{-2}~{ m d}^{-1}$	Particulate organic nitrogen flux standard deviation.

Table 1. Continued.

Label/Variable	Units	Description
BSiO ₂	mg m ^{-2} d ^{-1}	Biogenic silica flux average.
BSiO ₂ _stdev	$mg m^{-2} d^{-1}$	Biogenic silica flux standard deviation.
CaCO₃	$mg m^{-2} d^{-1}$	Calcium carbonate flux average.
CaCO ₃ _stdev	mg m ⁻² d ⁻¹	Calcium carbonate flux standard deviation.
Terr/Litho	mg m ⁻² d ⁻¹	Terrigenous or lithogenic (as reported) material flux average.
Terr_stdev	mg m ^{-2} d ^{-1}	Terrigenous or lithogenic material flux standard deviation.
PIC	$mg m^{-2} d^{-1}$	Particulate inorganic carbon flux average.
PIC_stdev	$mg m^{-2} d^{-1}$	Particulate inorganic carbon flux standard deviation.
Institution	NA	Affiliation institution of main author and/or data originator (when available).
Reference	NA	Simple ID to identify the publication where the data is reported.
Trap_ID	NA	Simple acronym of sediment trap type and/or characteristics of it.
Trap_Type	NA	Description of sediment trap type and/or characteristics of it.
Data source	NA	Link to data source.
Notes	NA	Notes.
WOA09_Temp	°C	Temperature from World Ocean Atlas 2009 (WOA09) Climatology.
WOA09_Sal	NA	Salinity from WOA09.
WOA09_DO	µmol L ⁻¹	Dissolved oxygen concentration from WOA09.
WOA09_O _{2SAT}	%	Oxygen saturation from WOA09.
WOA09_AOU	µmol L ⁻¹	Apparent oxygen utilisation from WOA09
WOA09_NO ₃	µmol L ⁻¹	Nitrate concentration from WOA09.
WOA09_Si(ŎH)₄	µmol L ⁻¹	Silicate concentration from WOA09.
WOA09_PO43-	μ mol L ⁻¹	Phosphate concentration from WOA09.

Discussion Paper

Discussion Paper

Discussion Paper

Table 2. Sinking material flux range, depth range distribution and number of observations available.

Variable	Number of observations	Range mg m ⁻² d ⁻¹		Depth range m	
		Min	Max	Min	Max
Total mass flux	4735	0.0	5584	15	5031
POC flux	5202	0.0	355.7	15	5031
PON flux	3996	0.0	57.9	20	5031
BSiO ₂ flux	2895	0.0	590.5	117	5031
PIC flux	1048	0.04	81.4	117	4832
CaCO ₃ flux	2631	0.0	2505.7	117	5031
Terr/Litho flux	2166	0.0	4528.8	117	5031

